

Soil Assessments

- Field
 - WV Soil Quality Card
 - NRCS Soil Quality Test Kit
- Classification
- Lab
 - OSU list of labs
 - Sample Collection
 - Soil Quality Project
 - Compaction & History
 - Lab tests

Hand Texture Flowchart

At home, do your soil texture

The trick is to use just enough water, but not too much!

Soil Texture Triangle

Fine clay has ~10,000 times as much surface area as the same weight of medium grain sand!

Sand

Clay

Coarse textured soils larger pores

Fine textured soils greater total pore space

Sand Clay

Influence of Texture

	Sand	Silt	Clay
Water-holding capacity	Low	Medium High	
Aeration	Good	Medium	Poor
Drainage	High	Slow Very slow	
Nutrient retention	Low	Medium High	

WV Soil Quality Card

OSU Willamette Valley Soil Quality Card and Guide available online

Willamette Valley Soil Quality Card (EM 8711)

Willamette Valley Soil Quality Card Guide (EM 8710)

NRCS SQ Test Kit

http://soils.usda.gov/sqi/assessment/test_kit.html

Infiltration

Lab Assessments

OSU Extension lab list

Sample collection is

VERY IMPORTANT!

What a Soil Test Tells You:

- ·Relative levels of nutrients in your soil
- · Fertilizer recommendation
- Standard soil test: P, K, Ca, Mg, B, pH,
 lime
- No good soil test exists for nitrogen requirement

Soil Quality

- Sustain biological productivity
- Maintain environmental quality
- Promote plant, animal and human health

Soil Health => Understanding soil processes

- Physical support for plants
- Aeration
- Soil water storage and movement
- Resistance to soil erosion
- Physical root proliferation and organism movement

- Nutrient storage and release
- · Soil reactions
- Energy (C) storage

- Pest suppression
- N mineralization
- OM decomposition
- Support of microbial community

provide farmers
with an assessment package
that describes on-farm soil quality
to guide future management decisions

Management and Soil Quality

Organic Matter

Soil Organisms

Soil Quality

Vegetation

Soil Structure

Water Infiltration

Soil Classification and Mapping

- 2010
 - > 7 farms
- 2011
 - > 3 farms

and Classification

Lab Assessments: Answer is in the BAG!

SQP Report

- for fee basis
- cost share opportunities

Name of Farmer	Farm name	Sample ID#
		23
Farm Lo	Sampling Date	
	OR	
Field ID per farmer	GPS Coordinates	Field Agent
Last Crop	Field Soil Texture	
weeds and	sandy loam	

	Indicators		Units	Range for SQP soils	Constraints
	Soil Textural Class	73	% sand	n/a	
	sandy loam	16	% silt		
ca	Sality Idaili	11	% clay		
Physical	Aggregate Stability	10	%	5-89	aeration, infiltration, rooting, crusting
•	Surface Hardness	545	psi	9-575	root growth, water transmission
	Subsurface Hardness	628	psi	55-628	rooting at depth
-	Organic Matter	1.1	%	1.0-11.5	energy, C storage, water and nutrient holding
Biological	Active Carbon	145	mg/kg soil (ppm)	98-901	organic material to support biological functions
	Potentially Mineralizable Nitrogen	0.0	ppm N per day at 22 oC	0.04 - 0.66	ability to supply N
					Recommended ranges west of the Cascades - check crop fertilizer guide.
	Extractable Phosphorus	17	ppm	4-242	low < 20; medium 20-40; high 40-100; excessive >100
Chemical	Extractable Potassium	129	ppm	102-1070	low <150; medium 150-250; high 250-800; excessive >800
	Extractable Calcium	1400	ppm	1400-4739	low <1000; medium 1000-2000; high >2000
	Extractable Magnesium	391	ppm	123-874	low <60; medium 60-180; high >180
	рН	6.7		4.8-7.4	Most crops grow best in soil pH between 6.0-7.5

Structure = Aggregates

- Held together by:
 - Fungal hyphae
 - Bacterial "glues"
 - Organic Matter
- Allows for:
 - Water infiltration
 - Healthy soil biology
 - Enough pore space
 - "Happy" roots

Hands-on FUN!!!

- 1. Place a ped of two soils, Soil A and Soil B, each on a petri dish or plastic lid.
- 2. Add enough drops of water to make a pool around the peds.
- 3. Observe the results.

Aggregate Stability

- 0.25 mm 2 mm aggregates
- 5 min of simulated rainfall
- Measure weight of stable aggregates to calculate % water stable aggregates

Aggregate Stability

Ag St vs. Texture vs. Manage

Effect of tillage & roots on stability

Water Infiltration

Compaction

Pore spaces are where plants get air, water, and nutrients.

Soil compaction decreases valuable pore space between soil particles.

Compaction

Less

Compaction

Dickey-john compaction tester

0-6 inches

6-18 inches

18-24 inches

Results impacted by:

- Soil moisture content
- Equipment training

Surface Hardness

Compaction Results

- Farmer awareness varied.
- Recommend decimal format for geolocation data.
- Importance of equipment training.

Organic Matter

Impact of soil organic matter on soil water

Healthy soils maintain a diverse and active community of soil organisms that:

- Suppress plant disease,
 & insect and weed pests
- Form beneficial symbiotic associations with plant roots
- Recycle essential plant nutrients
- Improve soil structure for better water and nutrient retention

Ultimately, healthy soils increase grower profits and protect the environment

Active Carbon

- Potassium Permanganate (KMnO₄)
- Color change reaction = biologically available Carbon

Chemical composition of plant matter

- Sugars, starches, simple proteins
- Crude proteins
- Hemicellulose
- Cellulose
- Fats, waxes
- Lignin

Total organic C, Comparing conventional till (CT) and no-till (NT)

KMnO4-oxidizable C ("active C"), Comparing conventional till (CT) and no-till (NT)

(Source: Weil et al. 2003. Amer J Alternative

Agric. 18(1): 3-17) Courtesy of D. Wolfe, Cornell Univer