

Soil Structural Stability - particles held & "glued" together

Disturb soil as little as possible!

Effect of OM on structure stability

Soil Microhabitats

Everything is everywhere and the milieu selects—Martinus Beijerinck

How biota diameter relates to particle size and pore size?

• Microflora and microfauna are similar in size to fine sand and clay.

Microfauna

Protozoa

- Most abundant of all soil fauna
- One-celled
- Feed on bacteria (live and move in water films)
- Up to 30% of all mineralized N from protozoa

Mesofauna

- Heterotrophs (detritivores, predators)
- Feed on fungi, protozoa, nematodes, mites
- Important in regulating populations of everything smaller

Collembola (springtails)

Fungus feeding mite

Nematode feeding mite

"It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organized creatures." Charles Darwin 1881

Earthworm casts vs. soil

Characteristic	Earthworm casts	Soil
% silt & clay (gizzard action)	38.8	22.2
Bulk density	1.11 _{g/cm³}	1.28 g/cm ³
Structural stability	849 (raindrops)	65 (raindrops)
CEC (cmol _c /kg)	13.8	3.5

From Table 10.4 of text

Worms increase availability of mineral nutrients to plants by:

- 1. Physical/chemical breakdown organic materials
- 2. Bioaccumulation: Collect, concentrate, & assimilate nutrients into their body tissue

- The major agent of decay in acid environs
- Network of hyphae: improves soil structure
- Decomposition of cellulose!!!
- Can compete with higher plants for N

Aggregates held together by:

- 1. Fungal hyphae
- 2. Bacterial "glues"
- 3. Organic matter

Fungi – tens of thousands of spp.

- The major agent of decay in acid environs
- Network of hyphae: improves soil structure
- Decomposition of cellulose!!!
- Can compete with higher plants for N

 Chemo Heterotrophs – energy and carbon from dead <u>or</u> living biomolecules (trap nematodes!)

Fungi – tens of thousands of spp.

Got beer?

- The major agent of decay in acid environs
- Network of hyphae: improves soil structure
- Decomposition of cellulose!!!

Can compete with higher plants for N

- Chemo Heterotrophs energy and carbon from living (trap nematodes!) or dead biomolecules
- 3 groups, yeast, mold, mushrooms
- Mycorrhizae symbiotic relationships with <u>most</u> plants
- Produce chemicals that are toxic (or otherwise...)

Thin Plants to	2-5"	ONIONS Allium cepa SCALLIONS Allium fi Sowing Indoors-Start in a 4-6 inch pot. Place location and keep moi	
Light Requirements	full sun	transplant outside bef 5 inches, then cut bad 3 inches. Sowing Outdoors-Di will be more uniform. It temperatures are at le Growing Tips-Thin be 5-7 inches between pl bunching onions 2 inc plants. Fertilization Tips-Bef or seeding analy 1/1 blanded organic fertiliz Mycorrhizae inoculant may help produce large insect Prevention Tiponions have a nunger many pests that may 1/2 Many gardeners integ throughout their garde Seed Specs-Min. gen Usual seed life: 1 year Some varieties are su gardening. See winter	
Days To Germination	6-12		
Soil Temp. For Germ.	\$5-75°		
Seed Depth	1/8-1/2"		

CALLIONS Allium fistulosum Sowing Indoors-Start up to 100 seeds n a 4-6 inch pot. Place in a warm ocation and keep moist. If you cannot ransplant outside before the tops reach inches, then cut back the tops to 3 inches. Sowing Outdoors-Direct-sown crops will be more uniform. Sow when soil emperatures are at least 55°F. Growing Tips-Thin bulbing onions 5-7 inches between plants and ounching onions 2 inches between Fertilization Tips-Before transplanting or seeding, apply 1/ 1/ cup of our lended organic fertilizer per 5 row re Mycorrhizae inoculant (see our catalog) may help produce larger bulbs. nsect Prevention Tips-Because onions have a pungent odor they repel many pests that may visit your garden. Many gardeners integrate onions hroughout their garden for this reason. Seed Specs-Min. germ. standard: 75%. Jsual seed life: 1 year. Some varieties are suitable for winter gardening. See winter catalog.

Phone orders and catalog requests: 541-942-9547 Fax orders: 888-657-3131 Web site: http://www.territorial-zeed.com

N capture (mycorrhizal fungi)

(Fungus Root)

 Soil fungi that form symbiotic relationship with plant roots

- Extend root surface area for uptake of nutrients
 - Fungus transfers nutrients (N,P,K) to plant
 - Especially important for phosphorous uptake because it is immobile in the soil
- Plant provides fungus with carbon (root exudates)

plant root

Ecto & endo types

mycorrhizae

Mycorrhizae "infecting" a plant root and extracting nutrients from rock particles.

Crops with mycorrhizal associations

- onions
- corn
- cotton
- wheat
- soybeans
- potatoes
- alfalfa
- sugarcane
- cassava
- rice

- most vegetables
- · beets
- apples
- grapes
- · citrus fruit
- trees (lumber and fiber)
- cacao
- coffee
- rubber

Oregon industries: Wine!

Christmas trees!

Douglas Fir Trees with and without mycorrhizae inoculation

Bacteria – 1 billion -1 trillion/g soil (up to 20,000 spp.)

- Exist in both forest and grassland soils
- Aerobic, anaerobic, and facultative forms
- Autotrophic and heterotrophic forms
- Most do best under high Ca²⁺, high pH
- Do best when soil temp 20-40C (68-100F) but seldom killed by temp extremes

- Historically classified as fungi misnomer
- Specialized group of soil bacteria -(unicellular, no nuclear membrane)
- Aerobic heterotrophs decompose OM humus-forming, also parasitic/symbiotic relationships with some plants
- Produce antibiotic compounds to competition etc. (side benefit – / drugs e.g. streptomycin)
- Super resistant to hostile enviro
- Sporulate smell "good" after ra

geosmins - dimethyl-9-decalok

Streptomyces - 199901-008

Filamentous bacteria which produces the antibiotic, Streptomycin.

Thanks bacteria!!!

From - http://www.scharfphoto.com/fine_art_prints/archives/000611.php

Bacteria and N fixation

Types of Biological Nitrogen Fixation (N2 from atmosphere)

Free-living (asymbiotic)

- Cyanobacteria
- Azotobacter

Associative

- Rhizosphere–Azospirillum
- Lichens-cyanobacteria (with fungi)
- · Leaf nodules

Symbiotic - nodule forming

- Legume-rhizobia
- Actinorhizal-Frankia

Complex, mutually beneficial relationships

SOIII