Notice of Budget Committee Meeting, April 20, 2021

A public meeting of the Budget Committee of the West Multnomah Soil & Water Conservation District, Multnomah County, State of Oregon, to discuss the budget for the fiscal year July 1, 2021 to June 30, 2022, will be held via video conferencing. The meeting will take place on 4/20/21 at 6:00 PM. The purpose of the meeting is to receive the budget message and to receive comments from the public on the budget. This is a public meeting where deliberation by the Budget Committee will take place. Any person may virtually attend the meeting and discuss the proposed programs with the Budget Committee. A copy of the budget document may be inspected or obtained on or after 4/16/21 on our website here. Interested participants may request a video conference access ID by emailing with the subject line “Request for Conference ID” or by calling 503-238-4775 and leaving a voicemail message at extension 100 no later than 5:00 PM on 4/20/21. To request a copy of the budget, submit written testimony, or sign up to provide verbal testimony at the virtual meeting, please contact us at no later than 4/15/21.

We’re hiring two field conservation interns

Thank you to everyone who applied for this year’s internship positions! We had a huge response of over 160 applications. The application period is now closed and applicants may refer to the hiring schedule they received in their confirmation email.  

We are hiring two adult (18+ years old) temporary, part-time Conservation Interns for spring through fall of 2021. Conservation Interns will receive mentorship, gain experience, and have opportunities to learn more about the field of natural resource conservation and caring for and giving to the land as practiced on non-public properties. We are looking for people with a passion to help make our ecosystems, water, and soil healthier for people, wildlife, and the environment. The District is committed to diversity, equity, and inclusion throughout our organization; therefore, interns will be provided with equity training, are expected to help co-create an inclusive work environment with fellow staff, and are invited to participate more deeply through the District’s diversity, equity, and inclusion committee or other opportunities.  Learn more and apply here.

2021 Conservation Internships Job Announcement

Two positions available: 1) Field Conservation Intern (Job Description), and 2) GIS & Field Conservation Intern (Job Description)
Location: Remotely from home | Field sites in western Multnomah County and Sauvie Island
Period of Employment: Approximately 6 months: April 1st – October 2nd, 2021 (dates somewhat flexible)
Pay: $17.00 / hour
Work hours: Average of 20 hours per week, two to three 8-hour days per week, 9:00 am to 5:30 pm (times somewhat flexible), M-F, with occasional optional evening and weekend hours.
The application deadline has passed. We are no longer accepting new applications. Eligible candidates will be contacted according to the hiring schedule sent with the application confirmation.  Thank you for your interest!

Application deadline: Friday, January 15, 2021 by 5:00 pm 

General Summary
West Multnomah Soil & Water Conservation District (“District”) is hiring two adult (18+ years old) temporary, part-time Conservation Interns for spring through fall of 2021. Conservation Interns will receive mentorship, gain experience, and have opportunities to learn more about the field of natural resource conservation and caring for and giving to the land as practiced on non-public properties. We are looking for people with a passion to help make our ecosystems, water, and soil healthier for people, wildlife, and the environment. The District is committed to diversity, equity, and inclusion throughout our organization; therefore, interns will be provided with equity training, are expected to help co-create an inclusive work environment with fellow staff, and are invited to participate more deeply through the District’s diversity, equity, and inclusion committee or other opportunities.

Primary Duties and Responsibilities

  • Monitoring native and invasive plants and assisting with other field site visits
  • Surveying, mobile data collection, and treating priority invasive weeds (including use of herbicides)
  • Data entry and analysis, making graphs, and writing reports
  • Mapping with ArcGIS (for the GIS & Field Conservation Intern only)
  • Communicating and working directly with staff, the public, property owners, and contractors through face-to-face contact, telephone, written, or email correspondence

Other Duties and Responsibilities

  • Meets regularly with Internship Program Supervisor for mentorship, training, and to check in on goals
  • Collects GPS, water quality, and forestry data
  • Assists with writing conservation plans and completing special projects related to the intern’s professional interests
  • Assists with outreach and educational activities to inform the public on natural resource conservation issues

Minimum Qualifications for BOTH positions (required to be eligible for either Intern position)

  1. Experienced with plant identification: Able to recognize and name common plants of the Pacific Northwest, trained in the use of plant identification resources, knowledgeable of plant anatomy and/or traditional ecological knowledge of plants and first foods
  2. Competent in the use of Microsoft Excel and Word software (or similar): Able to enter data and create graphs and compose written documents incorporating text, pictures, and tables
  3. Able to work outdoors under a range of conditions and terrain and able to lift up to 17 pounds
  4. Willing to work with and apply herbicides alongside other District staff members who are licensed herbicide applicators and who will provide training and supervision
    Covid-19 Minimum Qualifications for BOTH positions (required to be eligible for either Intern position)
  5. Hold a valid driver’s license and either be: a) comfortable using a personal vehicle and being reimbursed for mileage or b) consent to a motor vehicle report in advance of using a District vehicle.
  6. Have a space to conduct office work remotely. Those who can provide a computer and internet access may be eligible for a monthly stipend. Those who cannot will be provided with a laptop and/or internet at the District’s expense.
  7. Wear a mask when interacting face-to-face with staff, the public, property owners, and contractors, and when using a District vehicle.

Additional Minimum Qualification for the GIS & Field Conservation Intern position ONLY

8. Competent at using ArcGIS mapping software: Able to import, create, and edit both spatial and attribute data in ArcGIS and create readable maps incorporating clear symbology and basic cartography elements such as labels, keys and scale references.

Desired Experience, Abilities, and Attributes

  • Participation in an environmental workforce development program (such as Green Jobs Program, VERDE, Wisdom Workforce, Greenspaces Restoration and Urban Naturalist Team/GRUNT, TALON, or Northwest Youth Corps)
  • Active students working toward a vocational or associates degree with an interest in natural sciences, natural resource management, environmental education, or other related field
  • Personal and/or professional experience engaging with underrepresented communities and/or individuals in a welcoming and respectful way, and support of diversity, equity & inclusion practices
  • Experience collecting field data and maintaining field notes
  • Good oral and written communication skills
  • Maintains positive, cooperative relationships with others and conducts work in a professional manner

Job Conditions

  • Both positions will work in the field approximately 60% of the time, and in the office 40% of the time.
  • The fieldwork includes working in and around such locations as urban areas, farms, and working forests; streams and ponds; properties with dense, thorny vegetation; steep slopes, and other hazardous terrain, and applying herbicides. Herbicide application will include training and supervision by staff who will be working alongside the intern. Occasional interactions with farm animals and pets may occur while in the field.
  • Physical exertion is required, such as walking and carrying equipment and tools weighing up to 17 pounds.
  • Due to COVID-19, our office is closed for now and staff is working from home for the foreseeable future, however; this is subject to change. Office work will be conducted remotely for an undetermined length of time. The office and outreach work includes using a computer and working or standing at a table or desk.
  • A valid driver’s license is required. Interns must EITHER be comfortable using their own vehicle and being reimbursed for mileage OR consent to and pass a motor vehicle report (paid for by the District) in advance of using a District vehicle to independently travel to field sites.


Base pay is $17.00 per hour. While the positions come with pro-rated Holiday pay and sick leave as required by law, this position does not offer health, retirement and other benefits that are available to our permanent employees. The employee or the District can withdraw employment without cause. The District will pay for any required training and licenses. Use of a personal vehicle, phone, computer, or internet is not required, but if such use occurs, certain expenses are eligible for reimbursement.

How to Apply

Interested applicants may apply for one or both positions. Past WMSWCD interns are not eligible for re-hire for this internship, though Green Jobs Program interns are eligible. Applications must be submitted by the application deadline, 5:00 pm, January 15, 2021.

Fill out a brief eligibility checklist through our online form:

You will then be prompted through the online form to upload a cover letter (maximum length of ONE page) and resume (maximum length of TWO pages). In your cover letter and resume, speak to how your personal and/or professional experience meet the Minimum Qualifications and Desired Experience, Abilities, and Attributes for optimal consideration for an interview.

Applicants are eligible for Veterans’ Preference when applying with West Multnomah Soil & Water Conservation District. For more information on required materials to submit, please see our Veterans’ Preference Policy.

Diversity, Equity and Inclusion

West Multnomah Soil & Water Conservation District is committed to racial diversity, equity, and inclusion throughout our organization: in those we serve, in our workforce composition, through the contractors we hire, and in those that benefit from our work. We welcome and encourage applications from Black, Indigenous, and people of color.

The District does not discriminate based on any class or identity including age, color, disability, gender identity or expression, genetic information, marital status, national origin, race, religion, sex, sexual orientation, and veteran status. The District is an equal opportunity employer and service provider. The District makes reasonable accommodations for persons with disabilities and special needs so as to provide access to district events, materials and services.

To better meet our equity goals and eliminate unconscious bias in the hiring process, the District has elected to redact some personal information from submitted materials that will be reviewed by the selection team including name, address and links to social media accounts.

If you have requests for accommodations or complaints about discrimination, harassment, inequitable treatment, lack of access to District events, materials or services, or for any questions at all, please contact us at or call (503) 238-4775.


For questions about the application process, or to request an accommodation to access and participate in this recruitment, contact Office Manager Randi Razalenti at or call (503) 238-4775, ext. 100 and leave a voicemail message with your name, phone number and inquiry.

For questions about the internship positions, contact the Internship Supervisor Ari DeMarco at or call (503) 539-3605 and leave a voicemail message with your name, phone number and mention of the position.

Join us for our Annual Meeting, October 20

Every year, West Multnomah Soil & Water Conservation District has an Annual Meeting to celebrate with those who live, work, and recreate in our District and to share information about our work over the past year and present the annual report for the past year. View the 2019-2020 Annual Report

The 2020 Annual Meeting will be held via Zoom on Tuesday, October 20, beginning at 6:00 p.m. followed immediately by the October meeting of the WMSWCD Board of Directors beginning at 7:00 p.m. The public is welcomed to attend one or both meetings.  A Zoom access code will be required to access either one or both of the virtual meetings. Interested Annual Meeting attendees may RSVP to or by calling 503-238-4775 and leaving a voicemail message at extension 100, no later than 5:00 p.m. the day prior to the meeting.

The agenda for the Annual Meeting includes presentation of the WMSWCD Fiscal Year 2019-2020 annual report, and presentation of the District’s annual conservation awards. Awards this year will be presented to the following:

Urban Cooperator Award: The Cottonwood School of Civics and Science, and Sarah Anderson, Fieldwork and Place-based Education Coordinator, for demonstrating an inspiring and resilient approach to adapting outdoor environmental education to the realities of the pandemic as well as a creative approach to integrating environmental and garden education into the rest of their education in general.

Rural Cooperator Award: Ashley Offensend, in recognition of Ashley Offensend’s commitment to oak savanna restoration and all that he has done to support these efforts on his land.

Non-profit Partner Award: Tryon Creek Watershed Council, Alexis Barton and Terri Preeg Riggsby, in recognition of a tremendous year of conservation accomplishments, equitable and inclusive community engagement and completion of critical steps to ensure continued capacity building and organizational health.

Green Award: Ping Khaw & Community Engagement Liaisons, in recognition of the powerful contributions Ping Khaw and the Community Engagement Liaisons have made to our organization, our partners, and the overall movement to embed equity and inclusion in organizations throughout our region.

Special Recognition: Indi Namkoong (Keith), in honor of the great contributions Indi has made towards advancing equity at WMSWCD and beyond, especially for Indi’s work on the “Whose Land is Our Land” report.

Be ready to evacuate during wildfire

By Michael Ahr, Forest Conservationist, West Multnomah Soil & Water Conservation District

Many of the woodland owners in the Tualatin Mountains have deep roots in Oregon. We’re sure many of you have close family and friends who have been greatly impacted by our recent wildfires. It’s warmed our hearts to hear stories of people on the hill taking in friends as well as livestock owned by loved ones – another example of the strong connections and community spirit in the Tualatin Mountains.

Reports are suggesting that this will be the deadliest wildfire season in Oregon’s history. The stories we’re reading are heartbreaking.  The West Multnomah Soil & Water Conservation District is known for recommending actions that reduce wildfire risk, but rather than stressing those actions at this time, we prefer to encourage all of our Skyline Neighbors and nearby woodland owners to focus on human safety and prioritize their evacuation planning before they worry about land management this fall and winter. Have emergency kits ready and your “go bags” packed. These will help in wildfire evacuation as well as earthquake preparedness. Make sure you know every possible way to leave your property for a safer place. The Skyline Ridge Neighborhood Emergency Team (SR NET) has been helping people prepare for disasters like this for years. Get information from this NET at

As we recover from these fires, we’ll hear stories of homes being saved by the actions people took to reduce fuels in their forest or trim trees around their house. However, we’ll also hear many stories where people took these protective actions and still lost everything, including human life. It’s natural to ask questions like, “Why were these fires so damaging?” or “Why did they overwhelm fuels reduction projects?” There are many reasons for this, many of which land managers and scientists will be learning more about as these fires are further examined. Below are just a few thoughts for now…

  • Much of the fire risk reduction that we do on forest land is related to mitigating risk from surface fires. These are the fires that burn sticks, shrubs, and other plant material lying on the ground. These fires might cause property damage, but can also help rejuvenate the ecosystem and offer benefits to many species of plants and wildlife. We thin forests to create wider tree spacing and pile slash in an effort to make sure that surface fires will burn with lower intensity and not significantly damage living trees.
  • When a fire climbs a tree and starts burning the upper branches in the canopy, it will spread quickly. As these fires spread, we call them crown fires. The fires in September were crown fires which can be very damaging and unpredictable.
  • One factor that leads to a surface fire becoming a crown fire is wind, and winds continue to cause problems after reaching the crown. As trees burn, strong winds can carry burning embers up to one mile away. This means that embers can literally fly over all the good forest management that you’ve done, land on your deck, and start a fire. Note that burning embers and strong winds were a major reason why the Beachie Creek, Riverside, and Holiday Farm fires grew in size so quickly. This is also why we hear frightening stories from those who evacuated of new fires starting all around them as they were driving to safety.
  • During intense fires, some of the actions you’ve taken at your house might be more important than the actions on your woodland. Cleaning gutters, sweeping your deck, and several other tasks are very important. See a great list of recommendations here.

To stay safe during wildfire, the actions you take on your woodland and around your home are important. If a backyard campfire or overheated car starts a fire near your home, these measures can help offer great protection. But keep in mind that catastrophic fires are known to occur in western Oregon, and have occurred for centuries, which means that you should be prepared to evacuate. Sometimes nothing you do in preparation or to combat an active fire are enough to keep you and your family safe. Please consult the resources provided in links above to craft an evacuation plan and pack emergency items. Stay safe!

A community approach to native bee research in Portland

If you were to guess how many species of native bees there are in Portland, how many would that be? And where do these bees prefer to nest? Local emerging entomologist, Stefanie Steele, a Master’s student at Portland State University (PSU) studying native bees in the Portland area, is working to answer those questions.

At the garden at Green Anchors in North Portland, one of her research sites, Steele slowly makes her way among the abundant flowering plants, inspecting them for tiny buzzing pollinators. A quick flick of her insect net captures a long horned bee (which turns out to be Melissodes sp., an Asteraceae plant specialist) that she carefully navigates into a clear plastic vial for safe transport back to the lab for identification.

magnified view of bee head and mandible

The 5-dentate (“tooth”) mandible is visible on this Megachilidae bee. The number of teeth and shape of the mandible is a key feature for identifying this species, as the number of teeth can vary depending on the genus and species.

“It’s very hard to identify them in the field,” says Steele. “You need a microscope to look at very small morphological features such as the venation on their wings – maybe they have two or three submarginal cells, or if specific veins are curved or arched. Or other very small details, like the size and density of the punctures on their integument (the “skin” on the abdomen) or counting the number of teeth on the mandible.”

It all started with honeybees

Steele’s interest in bees began at a young age when she was part of her school’s bee club which kept several honeybee hives on the school roof. “Have you ever been inside a honeybee hive?” asks Steele. “I recommend it to everyone. It’s a full immersive experience, seeing all the bees walking around, seeing how they’re communicating with each other, even the smell of it and the sound of them. It’s a really, really cool experience. And they work together cooperatively so well. Their whole social system is really amazing and intriguing to see. That’s what got me hooked.”

Steele moved to Portland to try out a different location after two years at the University of Cincinnati. Like many others, she was drawn to all the different natural environments in Oregon. She went back to school at PSU to finish her bachelors in biology and during that time was inspired to start the Bee Task Force (scroll down on page linked here to find the Bee Task Force) with help from other students and faculty. The Task Force was focused on maintaining honeybee hives and creating pollinator habitat for the honeybees and for native bees in that area. It was through this work that Steele met Susan Masta, PSU Associate Professor and head of the Masta Lab where Steele’s graduate work is now based, and where her research expanded to native bees.

Portland bee survey

Bee collection and identification are key components of a 3-year survey of bees in urban Portland that Steele developed as an undergraduate with Masta. Before this project, no one else in the Portland area had published a survey to determine what native bee species reside in our area, as bees on the west coast are far understudied. They are looking to discover what bees are found here, when they are active, and also what their floral and other plant associations are – which plants and flowers they use for nectar, pollen, nesting materials, or nesting sites.

Through the Portland bee survey, Steele, Masta and team have so far found over 100 species of bees in urban Portland. The survey team is still working to identify the species they collected, and as they learn more, they expect those numbers to increase. The next step will be to publish the results of the first three years of the survey. Future research may depend on available funding and staffing to collect and identify new specimens.

2 side-by-side photos of capturing a bee in a small plastic vial

Steele collects an Melissodes sp. for identification.

One challenge that Steele and colleagues face with identification is the lack of a comprehensive species list to reference for Oregon. “There is still so much to be learned about the bees of Oregon,” Steele explains. “We’re still working on identification in general within the U.S., but the east coast overall is well studied. The west coast is far less studied, so a lot of the morphological cues that we’re using to identify the bees comes from the east. There is some overlap within species, but they aren’t all entirely the same.”

Steele is helping to grow that state-wide knowledge. Some of the species she has collected will be housed within the invertebrate collection at the Portland State Museum of Natural History where they can be used for education, research, or historical state records.

Native bee nesting research

two people standing in a garden next to tall wooden post

Masta Lab volunteers Dan Mullen and Erica Rudolph setting up a post with nest blocks at the PSU Community Orchard.

Steele’s graduate work with Susan Masta grew out of the Portland bee survey. Steele is focused on investigating the nesting height and diameter preferences of solitary cavity nesting bees. Her research is sited at 14 locations around the city including Green Anchors, the PSU campus and community orchard, and friends’ and colleagues’ homes that have gardens designed to attract pollinators. She erected posts with 54 wood nesting boxes set at 3 different heights, each with trays that had 31 cavities of varying diameters ranging from 3 to 10 millimeters.

Volunteers helped monitor the boxes throughout the nesting season, recording which of the cavities contained nesting material, adult bees, or wasps that also nest in cavities. Once nesting activities were complete, Steele collected the boxes for incubation in the lab. Overall, her nests had good occupancy rates—about 28% and successful incubation reared fifteen species of bees. She did see some loss of specimens due to mold that may have developed because of weather at the end of the nesting season or was introduced by the female bee. “The adult bee may inadvertently collect pollen that has mold spores on it,” Steele explains. “As she moves throughout the cavity, building separate cells for each egg, she can distribute those mold spores throughout the entire nest.”

During incubation, Steele also saw some parasitism, which can be a sign of a healthy ecosystem. In some of her nest trays, tiny wasps (likely Melittobia) or the bee fly mimic (Anthrax) had infiltrated the nesting cells while still in the field and laid their eggs on top of the bee eggs. The larvae of these parasitoid insects feed on the larva of a host bee or wasp, eventually killing it. In one case, an undergraduate assistant counted 80 of the 1-millimeter wasps parasitizing one bee larva. Steele comments, “Just imagine all of these wasps completing their development and then moving on to the next developing bees. Crazy.”

2 side-by-side photos of tiny wasps. Larva on left adults on rightva

(Left) Parasitoid wasp larvae feeding on Megachile angelarum (bee) larva; (Right) Adult parasitoid wasps

Awaiting results

Aside from these losses, Steele’s research, timeline, and goals stayed on the course she had set initially. She is currently analyzing the massive amount of field data she and her volunteers collected. One early takeaway that the research confirmed is the importance of available cavity nesting habitat. Bees only get a short window as an adult to find suitable nesting sites to create the next generation of bees. “Most of a bee’s life is spent in diapause when they’re essentially inactive and at a more vulnerable state as a larva – about ten or eleven months out of the year,” Steele says. “And then for four to six to eight weeks, they’re active flying adults.”

Yard features that are sometimes considered unattractive, like dead leaves and logs on the ground, dead tree limbs, or even entire snags – standing dead trees – actually provide important bee habitat. “Beetle larvae will excavate tunnels in downed logs or standing dead trees, and when the beetles are gone a bee will find that unoccupied cavity, and that is prime habitat,” explains Steele. Deadheaded hollow or pithy stemmed plants are also great habitat. “Some bees, like small carpenter bees in the genus Ceratina, will chew out the pithy stemmed plants and then nest inside,” she says.

“About 70 percent of bee species nest in the ground,” says Steele, “but 30 percent nest in cavities, and with all that perpetual yard tidying, nesting habitat is severely limited. So, you could change your habits, but you could also provide artificial nesting structures.”

For gardeners looking to provide nesting structures, offering a variety of cavity hole sizes is important, especially smaller holes. In Steele’s study, the 3 and 5 millimeter diameter holes were used most. “The female bee wants to ensure a tight fit to reduce moisture and parasitism and still allow space she needs to lay eggs and fertilize some of them,” says Steele. She found that a greater number of smaller rather than larger bodied bees occupied the nests she put out. “Osmia lignaria is the mason bee that a lot of people are familiar with. They are a little bit smaller than a honeybee. I found them nesting in the five millimeter size, six millimeter size, and the eight millimeter size cavities. So if you provide a diversity of sizes, then greater numbers of bees would be able to utilize those spaces.”

Placement of cavities is also important to consider. Facing holes southeast is ideal to catch some heat from the morning sun, and prevent overheating as south-facing holes may experience. Boxes should be sheltered and angled slightly downward to prevent rain from getting inside. Steele also recommends providing a selection of plants and flowers that will bloom throughout the growing season. “There’s less floral nectar available at the end of summer season into fall, so providing more forage for them throughout the entire season is very important,” she says. (See our Pollinator Plants & Bloom Periods chart for guidance.)

Communities in science and nature

Steele’s own community plays an important role in her research. The Oregon Bee Atlas designed and donated 30 of the 54 nest boxes, and are also leading a state wide survey effort of the bees of Oregon. Steele also found help from woodworkers at Green Anchors with the proper tools to build the remaining boxes. Her volunteer monitors were also essential for helping collect data.

The greater scientific community however, has presented a challenge for Steele. She is often one of the only BIPOC at a workshop or conference in her field, and she finds it discouraging and uncomfortable at times. However, she feels fortunate for the colleagues, mentors, and advisors in her life that encourage and elevate her. She also finds joy in engaging young people in the fascinating world of bees, and showing them that she too is what an entomologist looks like, a woman of color. Steele looks forward to connecting with more BIPOC in her field and related fields.

Steele also hopes her research will help inform gardeners and others looking to support our local native bee populations with information on suitable habitat and how to make outdoor spaces more attractive to cavity nesting bees.

For more information and project updates contact Stefanie Steele,

For information on pollinator research completed by West Multnomah Soil & Water Conservation District, see our Pollinator Monitoring Community Science Program page

Monitoring Understory Seeding Project Plots

By Hannah Spencer, West Multnomah Soil & Water Conservation District, Field Conservationist Intern

One of the first projects I worked on as a new intern with West Multnomah Soil & Water Conservation District (WMSWCD) was the Understory Seeding Project headed by staff conservationists Laura Taylor and Michael Ahr, and I was absolutely ecstatic at the opportunity to be involved. Officially part of the District’s Forest Understory Vegetation Enhancement Project, this project was funded through a federal Natural Resources Conservation Service Conservation Innovation Grant, and was undertaken to figure out how to increase native groundcover using native seed mixes, especially on sites that had once been overrun by invasive species. Several properties had been selected as study sites in 2018, and this spring I went with Laura to check on their progress.

The first site we visited was a narrow forested patch between two homes. The understory was fairly clear and open, with some large shrubs and a thick layer of leaves on the ground. The site had recently been cleared of ivy and vinca, leaving a blank slate on the forest floor for the native seeding study. When we arrived, I saw that this site was already showing signs of success. In the first plot was a circle of bright, new green with a neon pink flag in the center to mark it as one of our study plots. In all, there were six plots at this site: two were seeded with a native seed mix; two were raked first, then seeded with natives; and two were raked but not seeded, as control plots. Not all of the plots at this site were covered in bright green baby plants, like the first one. For example, it looked to me like the plots that had been raked first, then seeded with natives, were more densely peppered with seedlings than plots that had not been raked first. However, we were here to do more than just visually evaluate the greenness of the various plots. This was science! We had data sheets that needed filling.

Before I could really be useful collecting data, I needed to learn to identify the plants we were observing. I was already comfortable identifying a lot of the native plants found in the Pacific Northwest, but I discovered that seedlings can look vastly different than adult plants; some of the seedlings were so tiny, they could have fit on the head of a nail! It’s difficult to tell them apart when they are that small. Luckily for me, Laura is an incredible botanist and a wonderful teacher, and I soon learned to pick up on details like the hairs on a tiny stem, or a notch in the tip of a leaf. As we started to count the plants in each plot and record them on our data sheets, I began to feel more confident. There is something so joyful to me about identifying plants, like the feeling of meeting a new person you can just tell you’re going to like.

Over the course of a few weeks, we monitored all eight sites. Some were mostly bare, with islands of seedlings, like the first site. Other plots were covered in grasses, and we had to hunt for our neon pink markers. In some cases, our markers had been eaten by elk, and we had to find the plots using photos from previous years!  Once we found the plots, we surveyed them for plant diversity and density, paying closest attention to species that were present in the seed mix we had used. We also noted if other plants, such as ivy or vinca, or natives not present in the seed mix, were present in the plots. Once we had collected data from all eight sites, we were able to look at trends across the whole project.

The data showed that my impression at the first site was correct: raked plots typically had more plants on them then plots that hadn’t been raked. This is probably because raking away debris before planting helps seeds get better access to soil, making it easier to establish than if they had to contend with dead leaves and branches. This means that if a landowner wanted to maximize coverage in their seeded areas, giving the ground a thorough rake before seeding might be worth their while.

The downside to this is that raking an entire forest would be extremely labor intensive, not to mention extremely disruptive to plants, animals, and soil. The best way to use raking is to choose small patches scattered throughout the understory, and rake and seed those. But what about those unraked parts of the forest (which will be the majority of the forest)? Can property owners do anything to improve the understory that has to be left unraked? Well, another trend we found was that plots which were not raked but were seeded still had a higher density of native plants than the control plots. As a bonus, they also had a lower density of exotic plants than either the control plots or the raked/seeded plots. This means that simply seeding their land without raking can be significantly beneficial to a landowner’s understory. This method won’t provide the same diversity or density that raking first would, but it will still help promote native plant populations. A landowner could even use a combination of raking small plots and seeding the rest of the understory to maximize native understory plant coverage

person holding an inside-out flower

Inside-out flower in seed (Vancouveria hexandra)

Another interesting result was the discovery of which species performed best in our plots. The seed mix used on the plots contained 17 different species, but some species didn’t perform well—or at all. For example, we did not see a single penstemon in any plot. (Such an underachiever.) Native understory seed mix is currently pretty hard to find, and expensive when you do come across it, so it’s important to know that your money is being spent on seeds that will perform well. According to our plots, the best investments seem to be: inside-out flower, small-flowered nemophila, miner’s lettuce, western fescue, pathfinder, sweet-cicely, Columbia brome, and blue wild-rye. Even though these species may be difficult to find as seed in stores, WMSWCD recommends that landowners who have these plants present on their properties can try collecting their seed and spreading it to bare areas of their properties. Just be very careful not to collect seeds from a plant you aren’t sure about—you don’t want to accidentally collect and spread an invasive species!

WMSWCD will be publishing a formal, detailed report on their findings later this year, so the entire community will have access to the information gleaned over the course of this study. And landowners can expect understory seeding to be included in more of the projects they undertake with WMSWCD. As WMSWCD shifts to exploring understory seeding in practice, other partners will continue exploring experimentally, such as Erin McElroy, a graduate student with Portland State University’s Department of Environmental Science and Management. Erin has been monitoring plots of her own using a similar protocol to the one WMSWCD used, but she has been including even more variables, such as the presence of worms, the soil profile, and aspect at her sites. Her research will help fine-tune the ways in which land managers can make their understories as successful as possible. She is also contacting local nurseries to talk with them about their interest in producing and selling native understory seeds, so she could have a direct hand in making seed more accessible in the Portland area. I feel so lucky to have been able to contribute to this project, and I’m excited to see how Erin, the WMSWCD staff, and the rest of the Understory Seeding Project partners continue to explore this topic.

You can create reptile habitat in your small forest

Photo by Pat Welle, Western painted turtle

Article by Michael Ahr, Forest Conservationist, West Multnomah Soil & Water Conservation District

Woodland owners are increasingly being encouraged to build brush piles for wildlife. At West Multnomah Soil & Water Conservation District, we often discuss their importance for an array of wildlife. Mammals can live in the piles. Songbirds feed on insects and other organisms in brush piles. Amphibians will seek shelter under the brush and you’ll also find them being used by reptiles…the class of wildlife that we often don’t talk about nearly as often in our forested uplands.

Perhaps we have some bias. Frogs and salamanders (which are amphibians) have a certain charisma and even a level of cuteness. Reptiles like snakes and lizards don’t conjure that feeling for many of us, and might even startle us in the woods. Reptiles, however, are an important part of the woodland ecosystem. They eat many of the rodents that crawl through our woodlands and end up being prey to raptors and larger mammals.

In the Tualatin Mountains, our common snakes include various garter snake species, rubber boas, and ringneck snakes. We have alligator lizards and skinks, and if you have enough sun around a pond on your property, you may find western painted turtles.

To encourage these species on your property:

  • Build brush piles with the slash from the trees you cut. Start with larger piece on the bottom of the pile and work your way up to finer branches, and even conifer branches that still have needles, near the top to create a roof.
  • Maintain downed wood and snags. We often hear about snags relative to songbirds, but reptiles may use them too.
  • Minimize disturbance around any known hibernation sites.
  • If you have a pond, provide basking structures for turtles.
  • We don’t have much exposed rock in the Tualatin Mountains, but if you do have some, you can try to expose it so the sun warms it more for reptile basking in the summer.

For more information, view the newest publication “Reptiles in Managed Woodlands” by the Woodland Fish & Wildlife Group. To find many other wildlife publications for family woodland owners, visit

Sturgeon Lake Restoration Project update, June 2020

By Scott Gall, Rural Conservationist

It has been over a year since the completion of construction on the Sturgeon Lake Restoration Project. After a decade of partnership building, planning, fundraising, and engineering, and just over four months of construction over the summer and fall of 2018, led by Columbia River Estuary Study Task Force (CREST), the Dairy Creek channel reopened to tidal flow between the Columbia River and Sturgeon Lake on Sauvie Island in fall of 2018.

What started with a few shovelfuls of sand, resulted in the replacement of two failing culverts with a 96-foot channel-spanning bridge, restoration of a half mile of channel by removing 22,000 cubic yards of sand and sediment, installation of a debris boom at the mouth of the creek to prevent logs and other large objects from floating into the creek, and planting of over 40,000 native plants and shrubs across 15 projects sites that encompass the restoration project.

As the second full winter winds down, the complete effects of the tidal flow from the Columbia River on Dairy Creek and Sturgeon Lake are just starting to become evident. With the reopening of Dairy Creek, after 30 years of being blocked from tidal flow, the tide has once again become an influence on the channel and the lake, changing the flow direction of the creek on a daily basis during low Columbia River levels. Both of these conditions have had an obvious impact on the elevation and shape of the Dairy Creek channel.

Data on channel elevation – the elevation of the channel bottom relative to sea level – collected in 2017, 2018, and 2019 have shown that while the excavated channel has changed from the design configuration, it is simply moving towards an equilibrium. For the most part the average elevations and widths of the bottom of the channel have stayed relatively consistent. Meanwhile, along the stretch of creek between the bridge and the lake, a section not touched during construction, sediment has moved out, lowering the creek bottom 6 to 12 inches in most spots. This new, lower elevation is roughly the same as the excavated channel which would be expected in a tidal system that flows both directions.

Observation of changes within Sturgeon Lake have been harder to come by. The 3000 acres lake has few roads that reach the shoreline. This is a great feature for wildlife and quiet recreation but it makes monitoring the lake much more difficult. West Multnomah Soil & Water Conservation District and CREST are employing aerial drones to cover larger areas than would be possible by foot. But each drone flight only covers about 50 acres, so even these are just snapshots. Initial data has been relatively inconclusive, showing neither an increase nor decrease in sediment in the areas monitored. Our hope is to see a flushing out of lake sediment over time. We intend to take drone photos every year to see the incremental change over time, and our next flights are scheduled for this fall.

Work on vegetation restoration began a year before channel construction, and in these past three years, we have successfully helped reestablish 40,000 native plants throughout the 15 project areas, including Alder, maple, willow, snowberry, red-flowering currant and many other native trees and shrubs. With this focus on restoring native plants, grasses, and forbs, we are now seeing native plants covering 80-90% of the ground in most places along Dairy Creek. As a result, there is more evidence than ever of wildlife utilizing the site. Prominent wildlife trails have popped up all along Dairy Creek with evidence of tracks from otter, beaver, deer, skunk, and raccoon. Additionally this spring, a platform installed at the mouth of Dairy Creek is now home to its first pair of nesting osprey.

Next steps include installation of a fish monitoring device known as a Passive Integrated Transponder, or “PIT” tag array at the site of the new bridge, though this has been slowed in part due to the COVID-19 pandemic. The U.S. Army Corps of Engineers supplied $40,000 for equipment, and Oregon Department of Fish and Wildlife staff intend to install it this summer, hooking into a power supply we recently installed. Our goal is to have the array up and running by this winter.

At this time, all signs and data point to a very successful project. Staff at WMSWCD and CREST will continue to monitor Dairy Creek and Sturgeon Lake for years to come, and the lake appears to have a bright future.

view of a creek from a kayak

Facing the mouth of Dairy Creek and the Columbia River

Update on restoration of Lower McCarthy Creek wetland and oak habitat

By Kammy Kern-Korot, Senior Conservationist

McCarthy Creek flows from NW Skyline Boulevard to Multnomah Channel across from Sauvie Island. This creek is unique to the area in that it is considered essential salmonid habitat, especially for coho and Chinook salmon. At the bottom of the watershed is 121 acres of privately owned land — most of which is wetlands and within the 100-year floodplain — protected by a conservation easement. West Multnomah Soil & Water Conservation District (WMSWCD) manages the land on behalf of the landowner and the Natural Resource Conservation Service (NRCS), the federal easement holder. We continue to actively restore native wetland and oak habitat on this site.

This project site is important because it hosts an array of wildlife species and because it is large and adjacent to an even more significant wetland complex, called Burlington Bottoms. A primary ecological goal for both properties shared by the owning and managing partners is to return more natural flooding to portions of the site(s) and, in so doing, create additional aquatic habitat and displace the incredibly dominant and invasive reed canary grass with native wetland vegetation. Species that benefit from this restoration include fish, salamanders, frogs, beavers, waterfowl, herons, bald eagles, turtles, songbirds and insects. WMSWCD’s objectives also include restoring native vegetation along the creek, as well as the upland areas that don’t flood, to a diversity of native wildflowers, grasses, shrubs, and trees, most notably Oregon white oak.

The District secured funding in 2015 from NRCS to improve approximately 5 acres of riparian (streamside) area and 3 acres of uplands. Since then, we’ve been treating invasive blackberry and reed canary grass, Canada thistle, and other weeds to restore riparian areas and create Oregon white oak savanna and native plant “hedgerows” for pollinators and other wildlife. We took 2 years (2017 – early 2019) to plant 12,000 woody and herbaceous wetland plants along the creek and followed with upland plantings. We did this with the help of paid crews and area native plant nurseries. The total NRCS project is valued at $123,000, which includes $100,000 of NRCS funds and contributed District staff time.

2 people in a field planting tree saplings

Photo by Pat Welle: Crews planting alder saplings and willow and dogwood cuttings.

We had the good fortune to find additional partners and funding that allowed us to embark on a new phase of restoration, which was begun in 2017 and completed in February 2020. In this project phase, we removed two culverts that were no longer needed, one of which impeded fish movement; added habitat features such as basking logs for turtles and structures to encourage and mimic beaver dams; and performed 4.8 acres of “marsh plain lowering” which greatly enhances wetland habitat. Invasive reed canary grass and more than 15,000 cubic yards of soil were scraped away to lower the surface elevation 2 to 3 feet in key wetland areas and to make the streambanks less steep. The areas lowered will now be inundated with more water and for longer periods than before, which provides better access and habitat for juvenile salmon and facilitates establishment of native wetland plants such as wapato, bulrush and bur-reed. The excavated soils were redistributed to cover invasive grass and replanted with native plants in both adjacent wetlands and the uplands.

wetland creek with vertical sticks in water to mimic a beaver dam

Photo by Pat Welle: A newly installed beaver dam analog, which is designed to saturate the site with more water and encourage beavers to create and maintain natural beaver dams, outcomes which better support native plant communities and make for healthier wetlands.

For this latest stage of restoration, we planted more than 8,000 new native trees, shrubs, and forbs (wildflowers), including over 30 species of forbs. We also seeded 100+ pounds of over 20 different species of native grasses and forbs in almost all areas of disturbed soil, both wetland and upland. Finally, we planted more sedges and rushes near the creek, to supplement earlier plantings there. More than $250,000 was invested in planting, maintenance, and wetland enhancement by Bonneville Power Administration via our partner Columbia River Estuary Study Taskforce, which facilitated the engineering and construction work.

The restoration work described here expands upon and connects to other restoration projects upstream, which are part of our Healthy Streams Program that aims to improve water quality and restore habitat along more of McCarthy Creek. The restored riparian forest keeps the water cool for fish, provides a corridor and connectivity for wildlife to move uphill where air temperatures are cooler and where habitat is available, and it helps keep the climate cool for us humans, too!

After 10 years of District involvement, the landowner, our staff and board, and all of the project partners are thrilled with the progress we are seeing on the property. Native plant communities are getting established where we’ve done weed control, enhanced the water levels, and added new native plantings. While monitoring project progress on-site this spring, we observed beautiful blooms on the lupines and heal-all (prunella vulgaris), and strong presence of meadow barley and American sloughgrass, among the many species we seeded. We’re even seeing additional native plants, such as sneezeweed, beggar’s tick and native buttercups, already returning and expanding on their own. We look forward to more good things to come!

Visit our YouTube channel to see what the site looks like and to learn more about this project in a video featuring Senior Conservationist, Kammy Kern-Korot.

A few of the plants and flowers now growing on the restoration site:
4 photos in a grid: 2 purple flowers, 1 yellow flower, creek with green plants